# 地盤調査法、地盤の性状, 地盤図 Soil exploration

地盤構造物の設計の1st step:現場条件の把握、 地盤災害調査 特に、地盤条件

⇒ もう一つ?? 過去の被災事例調査,文献調査(通常の設計でも)

力学特性(硬さ、強さ)

調査場所:

Hai Phong

3

地盤調査 => 室内試験 => 実設計 ,層序(地層構成) 粒度分布 コンシステンシー限界 地盤を見る(調査する)方法 最大·最小密度 土粒子密度 直接的な方法: 含水比 ・孔をあける = ボーリング(boring) 室内試験 = サンプリング(sampling) ・土をとる 密度(乾燥、飽和) 間接的な方法 ・サンプラー(センサー付)を挿入する = サウンディング(sounding) 大まかな土の分類

## 東京の地盤図(地質断面図)



#### ρの種類? 地層構成と物理特性 (Vietnam) $\rho_{sat}$ , $\rho_t$ , $\rho_d$ , $\rho'$ Grain size distribution $\rho$ (g/cm<sup>3</sup>), G<sub>s</sub> $W_P$ , $W_n$ , $W_l$ (%) Description 0 20 40 60 80 100 | 018 1.0 1.2 1.4 16 記事 Fill: sandy clay with 12 16 20 24 28 20 40 60 80 gravel, broken bricks Soft to firm Clay (CL) G<sub>s</sub> with some organic dark grev colour Low plasticity 1.21 20 42 分類 Soft to firm Clay (CH) Browish to blueish 性質 colour Û SILT High plasticity I<sub>p</sub>? I<sub>i</sub>? Depth (m) CLAY 12 Sr? Lean Clay: Medium to Stiff Browish to blueish colour 16 End of boring 20

22

Soil profiles and physical properties

# ボーリング

### 地盤探査の基本:

目的、深さ: 資源開発、温泉掘削、地質学的調査委 => 数千メートルー数百メートル 井戸掘削、建設工事の地盤調査、構造物の健全度判定

=> 数メートル ~ 数百メートル

種類: ロータリー式機械ボーリング

オーガーボーリング、パーカッション式、ダイアモンドコアカッター

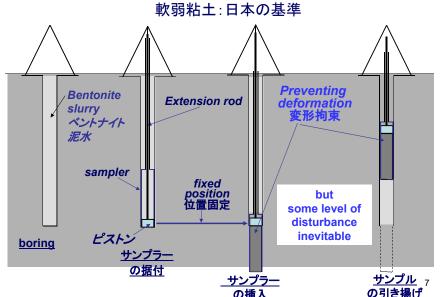
試掘(テストピット)

コアボーリング <=> ノンコアボーリング

# サンプリング

・地盤試料の採取:(深くなると)ボーリング孔を利用

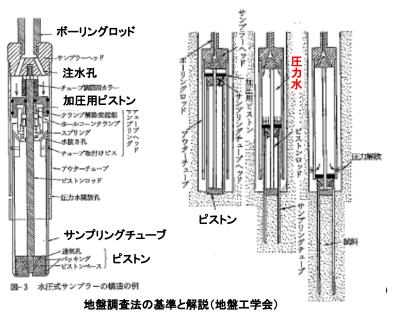
・サンプリング方法:土の種類、固さ、目的に依存、 軟弱粘土、砂、岩、


層序、分類、物理特性(w, e,  $\rho$ )、

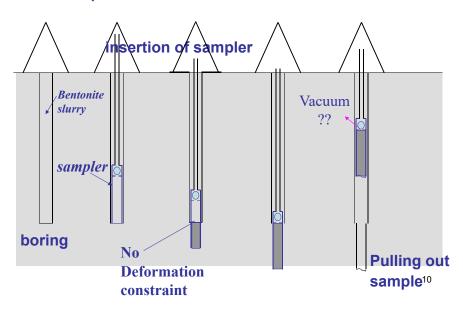
力学特性(強さ、硬さ)

### サンプリン風景(ベトナム、ハイフォン)

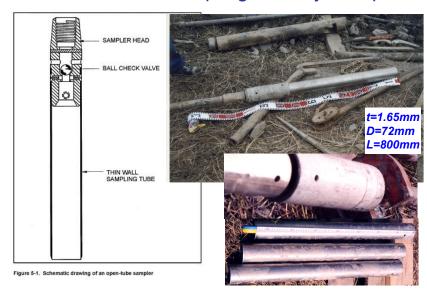



# Thin-walled tube sampler with fixed piston (固定ピストン式シンフォールサンプリング)



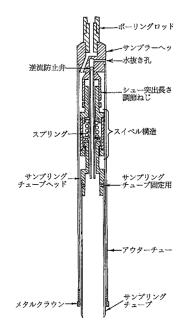

# Undisturbed soil sampling- JPN Fixed Piston Sampler (Extension rod type)




### 水圧式固定式ピストンシンフォールサンプラー



### -Shelby tube sampler – (シェルビー式サンプリング:オープン式)




### Undisturbed soil sampling- Shelby Sampler



# 比較的硬い土 (洪積土)の サンプリング

Rotary double-tube sampler (Denison sampler) デニソンサンプラー



地盤調査法の基準と解説(地盤工学会)

## サンプリングの質と乱れ

地盤内の土が持っている特性=f(土の種類、土の状態(w, e, 構造, 骨格) (Intact property)

土の構造,骨格(structure, fabric) => 変化、破壊 => 特性の変化

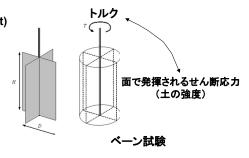
撹乱、乱れ(disturbance) サンプリング、試料運搬、試験準備中

- •不撹乱試料(undisturbed sample): 地盤中の土に近い
- ・練り返し試料(remolded sample):地盤中の土が持っていた構造・骨格消失

両者の比較:土の乱されやすさの指標:

鋭敏比:sensitivity (S<sub>t</sub>) = <u>不撹乱試料の一軸圧縮強度(q<sub>n</sub>)</u> 練り返し試料の一軸圧縮強度(q<sub>nr</sub>)

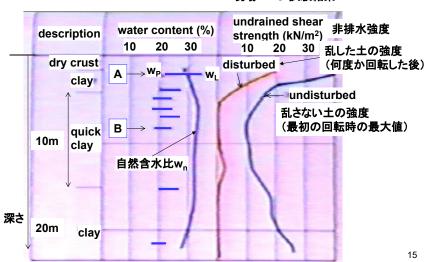
鋭敏な土: S<sub>t</sub>>4、 Quick clay => S<sub>t</sub>>100


液性指数 
$$I_L = \frac{W_n - W_p}{I_p}$$
 と密接な関係:

13

# サウンディング

地盤中のサンプラー、コーン等を貫入し、貫入時の抵抗、水圧計測により、地盤の特性を調べる、原位置調査法の総称。


- ·標準貫入試験(standard penetration test)
- ・コーン貫入試験(cone penetration test)
- スウェーデン式サウンディング
- ・原位置ベーン試験(field vane test)
- ·孔内水平載荷試験



14

### Rissaの地すべりのビデオに出てきた土性図

#### 現場ベーン試験結果



### 標準貫入試験 Standard penetration test: SPT

ノマー質量(63.5kg)

ケーシング

- リング孔 75 mm 程度

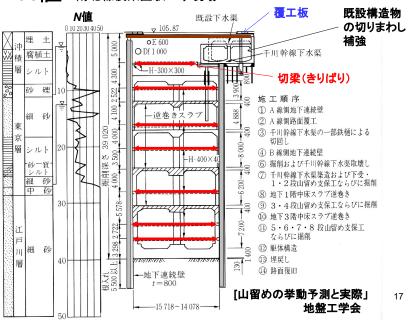
標準貫入試験用サンプラー

規定 | 入量:30cm

Terzaghi & Peck (1948) "Soil Mechanics in Engineering Practice" N値(N-value): 63.5kgのハンマー 75cmの高さ



N値と膨大な計測事例の比較: 材料として力学特性、構造物の特性




標準貫入試験用サンプラー

貫入部の試料を採取できる

16

# N値:<sub>南北線後楽園駅工事現場</sub>



### N値の利用法

#### N値と砂の相対密度の関係: Terzaghi & Peck(1948)

| N値    | 相対密度              |  |  |
|-------|-------------------|--|--|
| 0-4   | 非常に緩い(very loose) |  |  |
| 4-10  | 緩い(loose)         |  |  |
| 10-30 | 中位の(medium)       |  |  |
| 30-50 | 密な(dense)         |  |  |
| 50以上  | 非常に密な(very dense) |  |  |

#### 粘土のコンシステンシー,N値、q<sub>u</sub>: Terzaghi & Peck(1948)

| ierzagni & Peck(1948) |       |                      |   |  |
|-----------------------|-------|----------------------|---|--|
| コンシステンシー              | N値    | 一軸圧縮強度               |   |  |
|                       |       | q <sub>u</sub> (kPa) |   |  |
| 非常にやわらかい              | <2    | >25                  | 1 |  |
| 柔らかい                  | 2-4   | 25-50                | ┝ |  |
| 中くらい                  | 4-8   | 50-100 -             | J |  |
| 硬い                    | 8-15  | 100-200              |   |  |
| 非常に硬い                 | 15-30 | 200-400              |   |  |
| 大変硬い                  | >30   | >400                 |   |  |
|                       |       |                      |   |  |

N値から推定または算定されるもの

•砂質土(地盤)

相対密度、内部摩擦角、変形係数 地盤反力係数、基礎の支持力、 静止土圧、液状化の可能性、間隙比

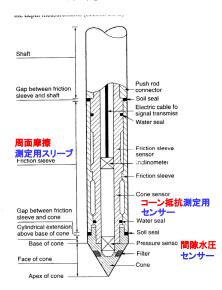
·粘性土(地盤)

コンシステンシー、一軸圧縮強さ 基礎の支持力

・地盤の評価

支持層の判定、軟弱層の判定 基礎工法の選定

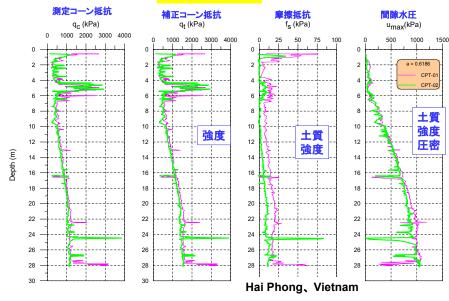
杭、矢板の貫入性の判定 すべり破壊面の推定


地盤改良効果の判定

N値からほとんどのものが設計できる

問題点: 連続性、低強度の評価 (特に粘土)

18


### Piezocone tests (CPTU) 三成分コーン





### Piezocone tests results (CPTU)

 $q_t = q_c + u_{\text{max}}(1-a)$ 



### 本日のTechnical terms

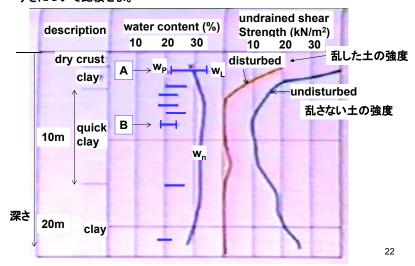
ボーリング:boring; サンプリング:sampling; サウンディング:sounding;

土の構造,骨格: structure, fabric;

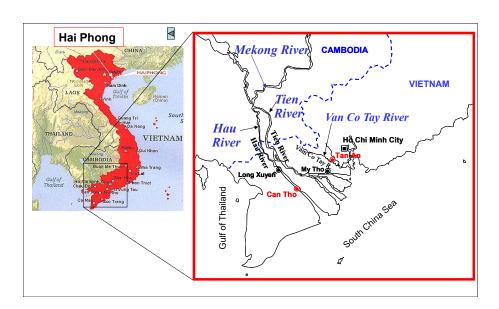
乱れ、撹乱:disturbance

不撹乱試料:undisturbed sample;

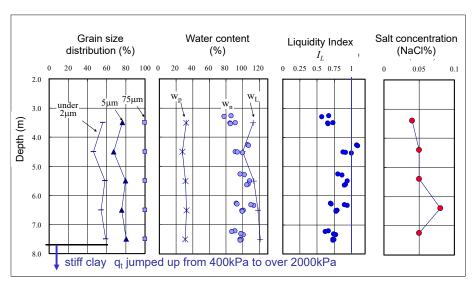
練返し(再構成)試料:remolded sample; 鋭敏比:sensitivity; クイック粘土:Quick clay


標準貫入試験: standard penetration test; N值: N-value;

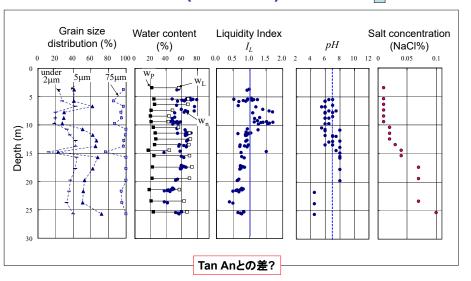
コーン貫入試験: cone penetration test; 原位置ベーン試験: field vane test


21

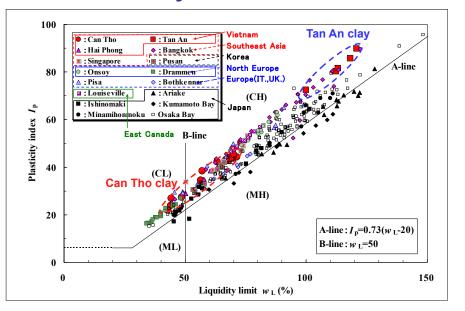
### 課題(7/1)


Rissaの地すべりのビデオに出てきた、以下の土性図から、A点、B点の深さにおける液性指数(I\_)と鋭敏比(S<sub>t</sub>)の概数を求め、それぞれの乱れやすさについて比較せよ。




# Mekong River and Delta




# Profiles of physical and chemical properties (Tan An)



# 



# Plasticity Chart (塑性図)

